23 : size(arrayloCopy.size),

24 ptr(new int[size])

25 {

26 for (size_t i = 0; i < size; ++i)

27 ptr[i] = arrayToCopy.ptr[i 1; // copy into object
28 1} // end Array copy constructor

29

30 // destructor for class Array

31 Array::~Array()

32 {

33 delete [] ptr; // release pointer-based array space

34 } // end destructor

35

36 // return number of elements of Array

37 size_t Array::getSize() const

38 {

39 return size; // number of elements in Array

40 } // end function getSize

41
Fig. 10.11 | Array class member- and friend-function definitions. (Part 2 of

6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// overloaded assignment operator;
// const return avoids: (al = a2) = a3
const Array &Array::operator=(const Array &right)

{

if (&right != this) // avoid self-assignment

{

// for Arrays of different sizes, deallocate original
// left-side Array, then allocate new left-side Array
if (size != right.size)
{
delete []1 ptr; // release space
size = right.size; // resize this object
ptr = new int[size]; // create space for Array copy
} // end inner if

for (size_t i = 0; i < size; ++i)
ptr[i 1 = right.ptr[i]; // copy array into object

} // end outer if

return *this; // enables x =y = z, for example
} // end function operator=

Fig. 10.11 | Array class member- and friend-function definitions. (Part 3 of

6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

64 // determine if two Arrays are equal and
65 // return true, otherwise return false
66 bool Array::operator==(const Array &right) const

67 {

68 if (size != right.size)

69 return false; // arrays of different number of elements
70

71 for (size_t i = 0; i < size; ++i)

72 if Cptr[i] '= right.ptr[i])

73 return false; // Array contents are not equal
74

75 return true; // Arrays are equal

76 } // end function operator==

7

78 // overloaded subscript operator for non-const Arrays;
79 // reference return creates a modifiable lvalue
80 1int &Array::operator[](int subscript)

81 {

82 // check for subscript out-of-range error

83 if (subscript < || subscript >= size)

84 throw out_of_range();
85

Fig. 10.11 | Array class member- and friend-function definitions. (Part 4 of
6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

86 return ptr[subscript]; // reference return
87 } // end function operator[]

88

89 // overloaded subscript operator for const Arrays
90 // const reference return creates an rvalue

91 1int Array::operator[](int subscript) const

92 {

93 // check for subscript out-of-range error

94 if (subscript < || subscript >= size)

95 throw out_of_range();

96

97 return ptr[subscript]; // returns copy of this element
98 } // end function operator[]

99

100 // overloaded 1input operator for class Array;
101 // inputs values for entire Array
102 distream &operator>>(istream &input, Array &a)

103 {

104 for (size_t i = 0; i < a.size; ++i)
105 input >> a.ptr[i];

106

107 return input; // enables cin >> X >> vy;

108 } // end function

Fig. 10.11 | Array class member- and friend-function definitions. (Part 5 of
6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

109
110 // overloaded output operator for class Array

Il ostream &operator<<(ostream &output, const Array &a)
112 {

113 // output private ptr-based array

114 for (size_t i = 0; i < a.size; ++i)

115 {

116 output << setw() << a.ptr[i 1;

117

118 if C (13 +) % ==) // 4 numbers per row of output
119 output << endl;

120 } // end for

121

122 if (a.size % 1=) // end last line of output
123 output << endl;

124

125 return output; // enables cout << X << y;

126 } // end function operator<<

Fig. 10.11 | Array class member- and friend-function definitions. (Part 6 of
6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Array Default Constructor

* Line 14 of Fig. 10.10 declares the agefault constructor
for the class and specifies a default size of 10 elements.

* The default constructor (defined in Fig. 10.11, lines 11—
18) validates and assigns the argument to data member
s1ze, uses new to obtain the memory for the internal
pointer-based representation of this Array and assigns
the pointer returned by new to data member ptr.

e Then the constructor uses a for statement to set all the
elements of the array to zero.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Array Copy Constructor

* Line 15 of Fig. 10.10 declares a copy constructor (defined
In Fig. 10.11, lines 22—28) that initializes an Array by
making a copy of an existing Array object.

« Such copying must be done carefully to avoid the pitfall of
leaving both Array objects pointing to the same
aynamically allocated memory.

* This Is exactly the problem that would occur with default
memberwise copying, if the compiler is allowed to define a
default copy constructor for this class.

« Copy constructors are invoked whenever a copy of an
object is needed, such as in passing an object by value to a
function, returning an object by value from a function or
Initializing an object with a copy of another object of the
same class.

10.10 Case Study: Array Class (cont.)

« The copy constructor for Array copies the size of the
initializer Array into data member s1ze, uses new to
obtain the memory for the internal pointer-based
representation of this Array and assigns the pointer
returned by new to data member ptr.

 Then the copy constructor uses a for statement to copy all
the elements of the initializer Array into the new Array
object.

« An object of a class can look at the private data of any
other object of that class (using a handle that indicates
which object to access).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

ZE! , Software Engineering Observation 10.3

The argument to a copy constructor should be a const
reference to allow a const object to be copied.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 10.4

If the copy constructor simply copied the pointer in the
source object to the target object’s pointer, then both
would point to the same dynamically allocated memory.
The first destructor to execute would delete the
dynamically allocated memory, and the other object’s
ptr would point to memory that’s no longer allocated, a
situation called a dangling pointer—this would likely
result in a serious runtime error (such as early program
termination) when the pointer was used.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Array Destructor

* Line 16 of Fig. 10.10 declares the class’s
destructor (defined in Fig. 10.11, lines 31-34).

 The destructor is invoked when an object of
class Array goes out of scope.

« The destructor uses delete [] to release the
memory allocated dynamically by new in the
constructor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

(3

Error-Prevention Tip 10.3

If after deleting dynamically allocated memory, the
pointer will continue to exist in memory, set the pointer’s
value to nul1ptr to indicate that the pointer no longer
points to memory in the free store. By setting the pointer
to nullptr, the program loses access to that free-store
space, which could be reallocated for a different purpose.
If you do not set the pointer to nul1ptr, your code could
inadvertently access the reallocated memory, causing
subtle, nonrepeatable logic errors. We did not set ptr to
nullptr in line 33 of Fig. 10.11 because after the
destructor executes, the Array object no longer exists in
memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Overloaded Assignment Operator

* Line 19 of Fig. 10.10 declares the overloaded assignment
operator function for the class.

« When the compiler sees the expression 1ntegersl =
integers?2 in line 47 of Fig. 10.9, the compiler invokes
member function operator= with the call

 1integersl.operator=(integers2)

* Member function operator=’s implementation
(Fig. 10.11, lines 44-62) tests for self-assignment (line 46)
In which an Array object is being assigned to itself.

« When this is equal to the right operand’s address, a
self-assignment is being attempted, so the assignment is
skipped.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

operator= determines whether the sizes of the two Arrays
are identical (line 50); in that case, the original array of integers
In the left-side Array object is not reallocated.

Otherwise, operator=uses delete [] (line 52) to release
the memory, copies the s1ze of the source array to the s1ze of
the target Array (line 53), uses new to allocate memory for the
target Array and places the pointer returned by new into the
Array’s ptr member.

Regardless of whether this is a self-aSS|gnment the member
function returns the current object (i.e., *this inline 61) as a
constant reference; this enables cascaded Ar ray assignments
such as X =y = z, but prevents ones like (x =y) = z because z
cannot be aSS|gned to the const Array- reference that is
returned by (X =y).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 10.4

A copy constructor, a destructor and an overloaded
assignment operator are usually provided as a group for
any class that uses dynamically allocated memory. With
the addition of move semantics in C++11, other
functions should also be provided, as you’ll see in
Chapter 24.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

